
NASA Contractor Report 181659 

ICASE REPORT NO. Sg127t 

ICASE 
ON THE PREDICTION OF EQUILIBRIUM 

STATES IN HOMOGENEOUS TURBULENCE 

Charles G. Speziale 

Nessan Mac Giolla Mhuiris 

(NASA-CR-181659) O N  THE PRED?CTION OF 
E Q U I L I B R I U H  STATES IN HOHOGENEOUS TURBULENCE 

F i n a l  Report ( N A S A )  47 p CSCL 20D 

Contract No. NAS1-18107 
April 1988 

~~ 

N88-23174 

U n c l a s  
63/31) QlY2688 

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING 
NASA Langley Research Center, Hampton, Virginia 23665 

Operated by the Universities Space Research Association 

NationalAermuticsand 
Space Administration 

Hampton,virginia 23665 
--- 



O N  THE PREDICTION OF EQUILIBRIUM 
STATES IN HOMOGENEOUS TURBULENCE 

Charles G. Speziale and Nessan Mac Giolla Mhuiris 
Institute for Computer Applications in Science and Engineering 

NASA Langley Research Center 
Hampton, VA 23665 

ABSTRACT 

A comparison of several commonly used turbulence models (including the K - c model 
and two second-order closures) is made for the test problem of homogeneous turbulent 
shear flow in a rotating frame. The time evolution of the turbulent kinetic energy and 
dissipation rate is calculated for a variety of models and comparisons are made with pre- 
viously published experiments and numerical simulations. Particular emphasis is placed 
on examining the ability of each model to accurately predict equilibrium states for a range 
of the parameter hz/S (the ratio of the rotation rate to the shear rate). It is found that 
none of the commonly used second-order closure models yield substantially improved pre- 
dictions for the time evolution of the turbulent kinetic energy and dissipation rate over 
the somewhat defective results obtained from the simpler K-c model for the turbulent 
flow regime. There is also a problem with the equilibrium states predicted by the vari- 
ous models. For example, the K-a model erroneously yields equilibrium states that are 
independent of n/S while the Launder, Reece, and Rodi model predicts a flow relaminar- 
ization when n/S > 0.39 - a result which is contrary to numerical simulations and linear 
spectral analyses which indicate flow instability for at  least the range 0 5 n/S 5 0.5. The 
physical implications of the results obtained from the various turbulence models considered 
herein are discussed in detail along with proposals to remedy the deficiencies based on a 
dynamical systems approach. 

This research was supported by the National Aeronautics and Space Administration 
under NASA Contract No. NAS1-18107 while the authors were in residence at ICASE, 
NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 

Homogeneous turbulent flows have played a central role in the calibration and testing of 

a variety of turbulence models. The reason for this prominence is twofold: (a) homogeneous 

turbulence contains many of the important flow effects of scientific and engineering interest 

in a simplified setting which quite often gives rise to closed form solutions in the commonly 

used turbulence models, and (b) there is an abundance of reliable data from physical and 

numerical experiments with which to compare the predictions of turbulence models. In 

particular, the physical and numerical experiments on homogeneous plane shear and plane 

strain (see Tucker and Reynolds 1968, Champagne, Harris, and Corrsin 1970, Tavoularis 

and Corrsin 1981, and Rogallo 1981) have been used extensively in the calibration of 

second-order closure models and the most recent two-equation models of the K--E: type. 

When a two-equation turbulence model or a second-order closure model is applied to 

homogeneous turbulence, it gives rise to an initial value problem for a set of coupled 

nonlinear ordinary differential equations - a dynamical systems problem. However, there 

appear to have been no previously published studies of homogeneous turbulence modeling 

from this nonlinear dynamics standpoint. This forms the motivation for the present study. 

In this paper the performance of four commonly used turbulence models (the stan- 

dard K-e model, a nonlinear K - e model, the Launder, Reece, and Rodi second-order 

closure model, and the Rotta-Kolmogorov second-order closure model) are examined for 

the test problem of homogeneous turbulent shear flow in a rotating frame - a problem 

which encompasses arbitrary combinations of plain strain and plane rotation. The time 

evolution of the turbulent kinetic energy and dissipation rate will be computed along with 

equilibrium states which, mathematically, are the fixed points of the resulting system of 

nonlinear ordinary differential equations. Extensive comparisons with physical and numer- 

ical experiments will be made. The results obtained are somewhat disappointing at  least in 

a quantitative sense. For example, it will be shown that the commonly used two-equation 

models of the K--E: type yield predictions for the turbulent kinetic energy and dissipation 
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rate that are independent of the state of rotation of the fluid - a result which is in sub- 

stantial contradiction to numerical simulations of the Navier-Stokes equations. While the 

second-order closure models do yield rotationally dependent solutions, it will be shown 

that their predictions of the time evolution of the turbulent kinetic energy and dissipa- 

tion rate are not (for the turbulent flow regime) substantially better than the significantly 

simpler K--E: model. Considerable attention will be paid to the ability of each model to 

predict equilibrium states. In this regard, it will be shown that there are deficiencies in the 

commonly used second-order closures. For example, the Launder, Reece, and Rodi model 

will be shown to predict a flow relaminarization when n/S > 0.39 whereas large-eddy 

simulations and linear spectral analyses indicate that there is an exponential growth in 

the turbulent kinetic energy and dissipation rate for 0 5 n/S 5 0.5 (it is only their ratio, 

the turbulent time scale, that approaches a structural equilibrium). On the other hand, 

the K--E: model erroneously predicts unstable flow for all values of n/S with exactly the 

same turbulence structure. The results predicted by these four turbulence models will be 

documented in detail and specific proposals will be made for the development of improved 

models. 

, 
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2. TURBULENT SHEAR FLOW IN A ROTATING FRAME 

We will consider the problem of homogeneous turbulent shear flow in a steadily rotating 

frame for an incompressible viscous fluid (see Figure 1). This problem is chosen because it 

incorporates arbitrary combinations of plane rotations and strains and, hence, represents 

a rather general class of homogeneous turbulent flows in a simplified setting. Since the 

homogeneous turbulence problem being considered is planar, the Reynolds equation is 

satisfied identically for all values of the rotation rate SZ and shear rate S (c.f., Reynolds 

1987). Consequently, no consistency problems can arise since the mean momentum and 

continuity equations are satisfied identically for the entire range of parameter space. For 

the problem at hand, the mean velocity gradient tensor is given by 

o s 0  

0 0 0  

and SZi = (O,O,SZ) is the rotation rate of the framing relative to an inertial frame of 

reference. We will restrict our attention to incompressible fluids with constant properties. 

First, we will consider the traditional K-E model for which the turbulent kinetic energy 

K and dissipation rate e are solutions of the nonlinear ordinary differential equations (see 

Hanjalic and Launder 1972) 

for any homogeneous turbulent flow. Here, 

K = - i r i i )  which is represented by the eddy viscosity model 

is the Reynolds stress tensor (such that 

where Cp, Ccl, and Cc2 are constants which are usually taken to assume the values of 0.09, 

1.45, and 1.90, respectively. For turbulent shear flow in a rotating frame, equations (2) - 
(3) simplify to 

K=C,,---S K2 2 - - E  

E 
( 5 )  
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and the components of the anisotropy tensor b;, -(r;j + $Kb;,)/K are as follows 

Equations ( 5 )  - (6) can be combined to yield a nonlinear differential equation for E / S K  of 

the form 

where T = St is the dimensionless time. The time evolution of the anisotropy tensor can 

be obtained from (7) - (9) which are solved subject to the initial condition 

EO - e 
--- 
S K  SKO 

at time r = 0. Then, the turbulent kinetic energy can be obtained from Eq. ( 5 )  integrated 

in the form 

S K  
-(-) d K  = (CpT-- 
dr KO 

which constitutes a linear differential equation for K / K o  once s / S K  is determined from 

(9). Here, 6 / 6 0  can be easily obtained once K/Ko and a/SK are known since 

Eo -Eo 

It therefore follows that the evolution of K/Ko, E / E O ,  and SKI6 in time r only depends 

on the shear rate and initial conditions through the dimensionless parameter SKo/eo. 

Consequently, the K--E model predicts that two homogeneous turbulent shear flows are 

dynamically similar provided that SKO/-EO are the same for both flows. This is only 

partially consistent with the Navier-Stokes equations which at least require that both 

SKo/eo and the shape of the initial energy spectrum be the same for two flows to be 

dynamically similar. The equations of motion for the K - E  model in homogeneous turbulent 
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shear flow are the same in all frames of reference independent of whether or not they are 

inertial and, therefore, the time evolution of K/Ko, &/eo, and SKI& are independent of 

the rotation rate fl of the reference frame. This result will be shown later to be in serious 

disagreement with numerical simulations of the Navier-S tokes equations. 

Equation (9) has an equilibrium solution (in the limit as r -+ 00) which is of the form 

where CY E (Ce2 - l)/(Cel - 1). Hence, the long time solutions (i.e., when r >> 1) for K/Ko 

which are obtained by substituting (13) into (11) and (12). It is thus clear that the K-e 

model predicts that there is an exponential growth of K and e in time for homogeneous 

turbulent shear flow; a structural equilibrium is reached in their dimensionless ratio SK/e  

which is completely independent of initial conditions. It is encouraging to note that this 

physical picture is consistent with direct numerical simulations of the Navier-S tokes equa- 

tions (see Rogallo 1981) and physical experiments (see Tavoularis and Corrsin 1981) for 

turbulent shear flow in an inertial framing. 

Speziale (1987) recently proposed a nonlinear K - E model which, for turbulent channel 

and duct flows, was shown to yield dramatically improved predictions for the normal 

Reynolds stress anisotropies. The Reynolds stress tensor for this nonlinear K - e model 

generalized for rotating flows is as follows (see Speziale 1988) 
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are, respectively, the frame-indifferent Jaumann derivative of 8, the mean vorticity tensor, 

and the intrinsic mean vorticity tensor (i.e., the mean vorticity tensor relative to an inertial 

framing). It is clear that the traditional K - E model is extracted in the limit as CD + 0 

(C, was evaluated to be 1.68 by correlating with experimental data for turbulent channel 

flow; see Speziale 1987). Equation (16) must be solved in conjunction with modeled trans- 

port equations for the turbulent kinetic energy and dissipation rate. The same transport 

equations for K and e as developed for the traditional K - e model (see equations (2) - 
(3)) have been used for simplicity. Consequently, for homogeneous turbulent shear flow in 

a rotating frame, it can be shown th& 

SK 5 R 
b22 = CDC: (-) E [-3 + 8(s)], bss = 3 

for the nonlinear K - E model. Since blz is of the same form for both the nonlinear and 

linear K - E model, it follows that the transport equations for K and e corresponding to 

(20) and (21) are the same as their linear counterparts. More specifically, equations (20) 

- (21) are solved along with the transport equations ( 5 )  - (6) which yield the same results 

for K and e as obtained from the traditional K - E model (most notably, this means that 

the equilibrium value of (SKI&) ,  = fi/C,, is the same as given in equation (13) for the 

traditional K-e model). Hence, the nonlinear K-e model of Speziale (1987, 1988) only 

gives rise to differences in the normal components of the anisotropy tensor. Later, it will 

be shown how these differences constitute a substantial improvement over the traditional 

K-e model. 

The most popular second-order closure model currently used is that of Launder, Reece, 

and Rodi (1975). In the most commonly used form of this model, the Reynolds stress 
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tensor is a solution of the transport equation 

which has been simplified for any rotating homogeneous turbulence. In equation ( 2 2 ) ,  C1 

and C, are empirical constants which assume the values of 1.8 and 0.6, respectively. This 

Reynolds stress transport model is solved in conjunction with the modeled dissipation rate 

equation given by (3) where C,, = 1.45 and C,, = 1.90. For the problem of homogeneous 

turbulent shear flow in a rotating frame, the Launder, Reece, and Rodi model yields the 

following system of coupled nonlinear ordinary differential equations: 

E 
6 2  = 722s + (C2 - 2)[n711 + 722(S - a)] - C 1 p 2  

Since 

it is not necessary to solve the transport equation for 733. The system of equations (23) 

- (27) can be non-dimensionalized and recast into an alternative system of equations for 

e / S K ,  611, 612,  6 2 2 ,  and K / K o  which are as follows: 

e 
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(32) 
n 2  (&) b l l  + b l 2 b l l  - = 2 [ (2 - C 2 )  s + z ( C 2  - l)] b l 2  + (1 - Cl) 

dbll 
dr 

(33) 
n 1  

= 2 [(C2 - 2 ) s  - $ 2 2  - l)] b12 + (1 - Cl) (") b22 + b12b22 
dr S K  

where r = St is the dimensionless time. These nonlinear ordinary differential equations 

are solved subject to the initial conditions 

at time T = 0 which correspond to a state of isotropy (the same conditions that are usually 

taken in physical 

be obtained from 

and numerical experiments). It should be noted that b33 and € / E O  can 

the computed variables as follows 

It is also interesting to note that the shear rate only enters into the solution of the problem 

through the initial condition SKO/EO. Hence, there can be equilibrium solutions which only 

depend on a single parameter - the ratio of the rotation rate to the shear rate n/S. Such 

equilibrium states are of the form 

e SK = (&)m 9 b l l  = (b l l )m,  b l 2  = ( b l 2 ) m ,  622 = (b22)m (37) 

in the limit as T --.) 00. In dynamical systems terms, (37) constitute the fixed points in 

the four dimensional phase space ( E / S K ,  b l l ,  612, 622) of equations (29), (31), (32) and 

(33). Mathematically, these fixed points are determined by setting the time derivatives of 

E / S K ,  b l l ,  b12, and b22 to zero. This yields the nonlinear system of algebraic equations 

E E 
- [(l - C c l ) b l 2  + (1 - C e 2 )  (-)I = 0 S K  
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2 [(C2 - 2 ) s  n 1  - i(Cz - I)] 612 + (1 - Ci) (-&) 622 + 612622 = 0 

whose solutions will be examined in the next section. 

The Rotta-Kolmogorov model (c.f., Mellor and Herring 1973) will be the last model 

considered. Since this model has been applied to a variety of geophysical fluid dynamics 

problems involving system rotations (c.f., Mellor and Yamada 1974), its performance in 

predicting homogeneous turbulent shear flow in a rotating frame is of interest. For a 

general homogeneous turbulence in a rotating frame, the Rotta-Kolmogorov model takes 

the form 

where l is the length scale of turbulence, and AI, B1, C1, and E are empirical constants 

which assume the values of 0.78, 15.0, 0.056, and 1.4, respectively. For homogeneous 

turbulent shear flow in a rotating frame, (42) - (43) yield the following system of nonlinear 

ordinary differential equations: 
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2 4 f i K f  
( 7 2 2  + -K)  - h R +  --. Jz K i  r22 = --- 

3A1 e 3 3B1 e 
However, the decay of turbulent kinetic energy is governed by the equal 

K = 712s - E 

ion 

(49) 

which is a rigorous consequence of the Navier-Stokes equations for the homogeneous tur- 

bulent shear flow under consideration. A simple comparison of equations (44) and (49) 

yields 

for the Rotta-Kolmogorov model. Hence, as with the Launder, Reece, and Rodi model, the 

system of equations (44)  - (48) can be non-dimensionalized and recast into an equivalent 

set of equations for SKI&, b l l ,  b12, and b22 as follows: 

d E ~ E  2 

dr SK  2 S K  S K  
- (5) = ( - -) -b12 - ("> 
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where T = St is the dimensionless time. This system of nonlinear ordinary differential 

equations is solved subject to the initial conditions (34) which correspond to an isotropic 

turbulence. As with the Launder, Reece, and Rodi model, K/Ko, E / E ~  and b33 are ob- 

tained from the computed variables using equations (30), (35), and (36) which are model 

independent. The equilibrium states corresponding to the Rotta-Kolmogorov model are 

obtained by setting the time derivatives to zero in (51) - (54) which yields the nonlinear 

algebraic equations 

(55) 

The equations of motion for the Rotta-Kolmogorov model are of the same general form 

as those for the Launder, Reece, and Rodi model (only the values of the coefficients are 

altered). Hence, both second-order closure models have the same topological properties. 

For example, both models have exponential long time growth behavior, Le., 

for T > 1 and (EISK) ,  > Ot (it should be noted that Tavoularis (1985) predicted such an 

exponential growth for the spatially evolving version of homogeneous turbulent shear flow 

obtained by a Galilean transformation). Furthermore, the bifurcation diagrams for the 

*For ( e / S K ) ,  = 0, it will be demonstrated later that K and E can either grow or decay 
with time. 
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models are qualitatively similar. A comparison of the results predicted by each of these 

models with physical and numerical experiments will be made in the next section. 
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3. COMPARISON OF THE MODELS 

First, we will present computed results for the time evolution of the turbulent kinetic 

energy and dissipation rate predicted by the various models. It should be noted that both 

the traditional and nonlinear K--E models yield the same results for the time evolution of 

K/Ko  and &/eo (the differences between the two models are in their predictions for the 

anisotropy tensor). Computations were conducted for a variety of values of n /S  using a 

Runge-Kutta-Fehlburg numerical integration scheme. In Figure 2, the time evolution of the 

turbulent kinetic energy is shown for f l /S = 0 and an initial condition of co/SKO = 0.496 

(picked to agree with the large-eddy simulations of Bardina, Ferziger, and Reynolds 1983). 

From this figure it is clear that none of the turbulent closure models considered are in 

good agreement with the numerical simulations. All of the models badly underpredict 

the turbulent kinetic energy obtained from large-eddy simulations. Two observations are 

noteworthy: (a) there is no discernible difference between the predictions of the Launder, 

Reece, and Rodi model and the K-e model for St 5 8, (b) the Rotta-Kolmogorov model 

appears to badly underpredict the turbulent kinetic energy after large elapsed times (at 

St = 10, it yields a value for the turbulent kinetic energy which is only approximately half 

of that predicted by the K-e and Launder, Reece, and Rodi models). Computed values of 

the turbulent dissipation rate are shown in Figure 3 for f l /S = 0 and an initial condition 

of eo/SKo = 0.496. All of the models yield results that are in a comparable range of one 

another but which dramatically underpredict the large-eddy simulations. 

No direct comparisons with the experiments of Champagne, Harris, and Corrsin (1970) 

are made because of the uncertainty as to what the initial dissipation was in that study. 

Mild to moderate changes in the initial dissipation (reflected in the initial condition 

eo/SKo) can yield dramatically different results for the time evolution of the turbulent 

kinetic energy and dissipation rate. In Figure 4, the time evolution of the turbulent ki- 

netic energy is shown for the Launder, Reece, and Rodi model and the Rotta-Kolmogorov 

model (both computed with EO/SKO = 0.28) along with the K-e model (computed with 
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eo/SKo = 0.35). Each of these models yield results that are in good agreement with the 

large-eddy simulations conducted for eo/SKo = 0.496 originally shown in Figure 2. Thus, 

we have demonstrated that model predictions can be misleadingly forced into agreement 

with the results of physical or numerical experiments by an ad hoc adjustment of the ini- 

tial conditions. It is, therefore, meaningless to make comparisons with such experiments 

unless the initial conditions are known with a strong degree of certainty. Unfortunately, 

the initial dissipation (and, hence, the value of E:O/SKO) is not known in many of the 

important experimental studies of homogeneous turbulence including that of Champagne, 

Harris, and Corrsin (1970). 

In Figures 5-6, the time evolution of the turbulent kinetic energy and dissipation rate 

are shown for R/S = 0.25 and the same initial condition of eo/SKo = 0.496. From Figures 

5-6, it is clear that all of the models badly underpredict the turbulent kinetic energy 

and dissipation rate in comparison to the results of the large-eddy simulation of Bardina, 

Ferziger, and Reynolds (1983). This discrepancy appears to be serious since the rather 

dramatic increase in turbulence activity indicated by the large-eddy simulations in Figure 5 

has been confirmed independently by linear spectral calculations (see Figure 3 in Bertoglio 

1982). In addition, one would expect, on physical grounds, the case of R / S  = 0.25 to be 

substantially more energetic than the case of n/S = 0. When third-order moments are 

neglected in the Reynolds stress transport equations, the equations associated with the 

R/S = 0.25 case are identical to those for plane strain and it is well known that plane 

strain is considerably more energetic than plane shear in homogeneous turbulence. 

The time evolution of the turbulent kinetic energy and dissipation rate for R/S = 0.5 

and an initial condition of -EO/SKO = 0.496 is shown in Figures 7-8. It is ironic to note that 

the K--E model yields the best agreement with the results of large-eddy simulations for 

this case. However, it must be remembered that the K--E model has a major defect in that 

it predicts the same results for K and E: independent of the value of R/S - a state of affairs 

that is contrary to both physical and numerical experiments. The Launder, Reece, and 
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Rodi model and the Rotta-Kolmogorov model yield qualitatively different predictions for 

this case (the former model predicts that the turbulence decays whereas the latter model 

predicts a weak exponential growth). This considerable disparity in the the predictions of 

the two models arises from the term containing C2 on the right-hand-side of Eq. (22) in the 

Launder, Reece, and Rodi model which destroys similitude with respect to the Richardson 

number (a similarity property which the Rotta-Kolmogorov model has). The Richardson 

number 
- 2 q s  - 2R) 

S2 Ri = 

is zero for the two cases of R/S = 0 and s1/S = 0.5. Here, the Rotta-Kolmogorov model 

yields the same results for both cases; the Launder, Reece, and Rodi model yields qual- 

itatively different results for the two cases; and large-eddy simulations indicate that the 

two cases are quantitatively distinct but qualitatively similar. It should be noted that the 

prediction of a decaying turbulence for sufficiently large values of h2/S > 0.5 is physically 

correct and will be discussed later. 

The equilibrium states associated with the K-s model for rotating shear flow were 

derived earlier in equations (8), (13), (20), and (21). In Table 1, the specific numerical 

values of the equilibrium anisotropy tensor bij and shear parameter S K / E  are given as a 

function of n/S for both the linear and nonlinear K--E models. It should be pointed out 

that these results were computed using the value of C,, = 0.055 which was recommended 

by Rodi (1972) for ratios of production to dissipation PIE of the order of two or greater 

(for the problem at hand, P / e  = 2). The traditional value of C,, = 0.09 was used for the 

time evolution computations since it rigorously applies for P / E  = 1 (the mean between 

the initial value of P / s  = 0 and the equilibrium value of P / c  = 2) and thus constitutes 

a reasonable average for C,, that is used in most engineering calculations where there is 

a temporally or spatially varying turbulence structure. It is clear that the equilibrium 

values shown in Table 1 for the linear K--E model are extremely poor in their prediction 

of the normal components of the anisotropy tensor. The nonlinear K--E model yields 
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dramatically improved predictions for these normal components of the anisotropy tensor 

(it should be noted that the large-eddy simulations tend to overpredict the anisotropy 

tensor due to problems with defiltering). However, both the linear and nonlinear K--E 

models yield equilibrium values of b12 and SK/e  which are the same for all values of n/S. 

While these predictions for SKI& are reasonably good for n/S = 0, they can be in serious 

error for other values of n/S. Specifically, for large values of n/S, a relaminarization of the 

flow would be anticipated on physical grounds where the turbulence decays in such a way 

that ( e /SK) ,  = 0. Such a relaminarization would be expected since, when n/S > 1, the 

Rossby number (e/2nK), < 0.1. A Taylor-Proudman reorganization of the flow to a two- 

dimensional state can then occur (see Tritton 1977), and the preponderance of evidence 

indicates that uniform shear flow is stable to large amplitude two-dimensional disturbances 

(see Patera and Orszag 1981). Therefore, any trend toward a two-dimensionalization would 

be accompanied by a relaminarization. Linear spectral models suggest that uniform shear 

flow is unstable for Ri 5 0 (Le., 0 5 n/S 5 0.5). Although precise bounds for the stability 

of uniform shear flow in a rotating framework have not been established, it is generally 

believed that this flow is stable for Richardson numbers that are somewhat greater than 

zero (e.g., for Ri > 0.2; see Bertoglio 1982). Hence, it is clear that (SKI&),  must vary 

considerably with n/S in conflict with results predicted by the K--E model. 

The equilibrium states associated with Launder, Reece, and Rodi model are solu- 

tions of the nonlinear algebraic equations (38)-(41). Nonzero values of ( e / S K ) ,  occur 

for -0.0904 < n/S < 0.3761 where the equilibrium states are given by 

(62) 
2(2 - cz) (1 - C2)(C1+ 2c2 - 1) + (2) 1 - c -- n (;)2'+ (a, = * (1 + C,) 1 12(2 - C2)2 2 - c 2  s 

c c 2  - 1 
c c 1 -  1 

c y =  
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2a [(2 - C2)i - i ( 1 -  CZ)] 
l - a - C 1  (bll) ,  = 

-2a [(z - C2)f - i (1  - Cz)] 
1 - a - c 1  (b22)m = 

2 

(67) 
- p ( 1 -  C,) 

(b3& = 1 - - c1 
where, by linear analysis, it can be shown that the upper branch ( e / S K ) ,  0 is a stable 

fixed point of the focus type; the lower branch ( e / S K ) ,  is an unstable fixed point of 

the same type. Of course, realizability requires that e / S K  > 0. Thus, it is interesting 

to note that realizability is satisfied by this model through the presence of the unstable 

branch ( e / S K ) ,  = 0 which is an invariant plane (hence, realizable initial conditions ensure 

realizable solutions for all time). Equilibrium solutions for the Launder, Reece, and Rodi 

model where (&/SK), = 0 and (b12), = 0 exist for all n/S and are of the form: 

where ( l 1 2 2 ) ~  is arbitrary.* Linear analysis also shows that this solution is an unstable 

saddle in the region -0.0592 < f2/S < 0.3449; numerical results indicate that this solution 

is actually unstable for the entire region -0.0904 < n/S < 0.3761 where the alternate 

solution (62)-(67) is stable. The equilibrium solution (68)-(70) is a stable fked point 

of the focus type for n/S < -0.0904 and n/S > 0.3761. Interestingly enough, there 

§Computations, however, indicate that for any given value of n/S only one value of 
(bZ2), is stable. 
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exists an additional branch of equilibrium solutions where (&/SK), = 0 and (bll)OO is 

nonzero for -0.0592 < n/S < 0.3449; however, these solutions are saddles which are, of 

course, unstable and thus never observable computationally. A bifurcation diagram of these 

equilibrium solutions for the Launder, Reece, and Rodi model is shown in Figure 9 where 

we plot (&/SK), vs. n/S. Only one stable equilibrium solution exists for a given value 

of n/S. It should be noted that the equilibrium solutions for which ( e / S K ) ,  > 0 have 

a turbulent kinetic energy and dissipation rate that grow exponentially with time. The 

stable equilibrium solutions for which (&/SK), = 0 can have a turbulence structure that 

either grows or decays with time. More specifically, numerical solutions of the Launder, 

I Reece, and Rodi model indicated an exponential growth in the turbulent kinetic energy 

and dissipation rate for -0.11 2 f2/S 5 0.39; there was a decay in the turbulent kinetic 

energy and dissipation rate for n/S < -0.11 and n/S > 0.39. 

The Rotta-Kolmogorov model has equilibrium solutions of a similar nature. Nonzero 

values of (&/SK), occur in the region -0.0915 < fl/S < 0.5915 for which the equilibrium 

states are given by: 

4 [ 2 ( 9  - $1 
22 00 = (' ( E  - 3) [I - B1/6A1+ 2/(E - 3)] 

3 
33 00 - ( b  - ( E  - 3) [I - B1/6A1+ 2/(E - 3)] 
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where (as with the Launder, Reece, and Rodi model) analysis indicates that the positive 

branch (&/SIC), > 0 is a stable fixed point of the focus type and the negative branch 

( e / S K ) ,  < 0 is an unstable fixed point of the same type. These branches of equilibria 

exist in conjunction with one where ( e / S K ) ,  = 0 and (biz), = 0 which is valid for all 

n/S and given by 

(&/SK), = 0, (b12)m = 0 (76) 

where (b22), can be arbitrary (computations, however, suggest that only one value of 

(b22), is stable for any given value of n/S). Computations indicate that the equilibrium 

solution (76)-(78) is unstable for -0.0915 < n /S  < 0.5915 (by a linear analysis it can be 

shown that (76)-(78) is an unstable saddle for 0.0009 < s1/S < 0.4991). The stability of 

this solution for n/S > 0.5915 and for n /S  < -0.0915 was verified by numerical com- 

putations. It is interesting to note that (similar to the Launder, Reece, and Rodi model) 

the Rotta-Kolmogorov model has additional unstable equilibria where ( c / S K ) ,  = 0 but 

(blz), is nonzero in the region 0.0009 < n/S < 0.4991. By linear analysis, these equilib- 

rium solutions can be shown to be saddles which are unstable. A bifurcation diagram for 

the Rotta-Kolmogorov model is shown in Figure 10. It has the same structure as that for 

the Launder, Reece, and Rodi model (the two models are topologically equivalent from a 

dynamical systems standpoint). The primary difference between the two models is that 

the Rotta-Kolmogorov model predicts an equilibrium value of ( s / S K ) ,  = 0 with a de- 

caying turbulent kinetic energy and dissipation rate for n/S > 0.61 as compared to the 

corresponding range of n/S > 0.39 predicted by the Launder, Reece, and Rodi model. In 

this regard, the Rotta-Kolmogorov model is superior since linear spectral models of tur- 
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bulence suggest that rotating homogeneous shear flow is unstable for 0 5 n/S 5 0.5. The 

Launder, Reece, and Rodi model is seriously in error in its prediction of a relaminarization 

for 0.39 < n/S < 0.5. On the other hand, for pure shear flow (n/S = 0) the Launder, 

Reece, and Rodi model yields an equilibrium value for ( e / S K ) ,  that is in much better 

agreement with the experiments of Tavoularis and Corrsin (1981) than the result pre- 

dicted by the Rotta-Kolmogorov model (see Table 2). The fact that the Launder, Reece, 

and Rodi model deviates incorrectly from Richardson number similarity can be seen in 

the equilibrium values for the anisotropy tensor for n/S = 0.25 shown in Table 2. The 

Launder, Reece, and Rodi model predicts that b22 B -3bll whereas large eddy simulations 

and supporting analogies with plane strain (see Bardina, Ferziger, and Reynolds 1983) 

indicate that b l l  rn b22 as predicted by the Rotta-Kolmogorov model. 

In Figures 11-12, the time evolution of the turbulent kinetic energy and dissipation rate 

are shown for the Launder, Reece, and Rodi model and the Rotta-Kolmogorov model for 

n/S = -0.25 and eo/SKO = 0.496. Both models predict a comparable decay in turbulent 

kinetic energy and dissipation rate that are in qualitative agreement with the linear spectral 

calculations of Bertoglio (1982). The Launder, Reece, and Rodi model exhibits more 

pronounced oscillations than the Rotta-Kolmogorov model (oscillations are to be expected 

from these models since their fixed points are of the focus type). 

In Figure 13, the time evolution of SK/e  is shown for the K-e model, the Launder, 

Reece, and Rodi model, the Rotta-Kolmogorov model, and the direct numerical simulations 

of Lee, Kim, and Moin (1987) corresponding to the initial condition of SKo/eo = 50 which 

constitutes a strong shear. The direct simulations of Lee, Kim, and Moin (1987) were 

done using the Rogallo code which for the weak shear case was shown by Rogallo (1981) 

to yield equilibrium values of SK/e  in the range of those predicted by the turbulence 

models we have been considering. Hence, the numerical simulations are indicative of the 

possibility of another stable equilibrium value of (SKI&),  attracting initial conditions such 

that SKo/eo >> 1. The recent experiments of Karnik and Tavoularis (1983) and Rohr, et 
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al. (1988) are supportive of the possibility of more than one fixed point in homogeneous 

turbulent shear flow. However, the issue still needs to be clarified. 
I 

The results shown in Figure 13 are suggestive of a potential problem concerning the 

applicability of the commonly used turbulence models to strong homogeneous turbulent 

shear flows. To further illustrate this point, the time evolution of the turbulent kinetic 

energy and dissipation rate are shown in Figures 14-15, for the Launder, Reece, and Rodi 

model and the Rotta-Kolmogorov model corresponding to the mild counter-rotation of 

n/S = -0.1 and the strong initial shear condition of S&/eo = 50. Both solutions are 

indicative of an exponential growth in turbulent kinetic energy and dissipation with large 

amplitude oscillations for Si! < 50. While one expects rotations to induce inertial oscilla- 

tions (and, consequently, it does seem to be correct that the models have fixed points of 

the focus type), it appears that the large amplitudes of the oscillations shown in Figures 

14-15 are unphysical. Such oscillations did not occur in the linear spectral calculations of 

Bertoglio (1982) for rotating shear flow and have not, to the best of our knowledge, been 

observed in any comparable flow configuration. 
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4. CONCLUSIONS 

Four commonly used turbulence models have been tested for the problem of homo- 

geneous turbulent shear flow in a rotating frame. Extensive comparisons between the 

predictions of the various models and the results of physical and numerical experiments 

have been made. The following definitive conclusions can be drawn: 

1. The standard K-e model is highly deficient in that it yields solutions which are the 

same for all values of n/S contrary to numerical simulations of the Navier-Stokes 

equations. In particular, the model badly underpredicts the normal components 

of the anisotropy tensor for all values of n/S and does not account for the flow 

restabilization which occurs for most positive Richardson numbers. 

2.  The nonlinear K--E model yields dramatically improved predictions for the normal 

components of the anisotropy tensor that are in the correct range of the results of 

large-eddy simulations for 0 5 n/S 5 0.5 and physical experiments for n/S = 0. 

However, the nonlinear model yields the same deficient predictions for K and e as 

the standard K-s model. 

3. The Launder, Reece, and Rodi model yields reasonably acceptable predictions for the 

equilibrium states for pure shear (n/S = 0) despite the fact that its time evolution 

predictions for K and E: are no more accurate than those for the K-e model. The 

model erroneously predicts flow restabilization for negative Richardson numbers (i.e., 

for 0.39 < n/S < 0.5, -0.17 < Ri < 0). Consequently, the model yields extremely 

poor quantitative predictions of the turbulence structure fof 0.25 5 n/S 5 0.5. 

4. The Rotta-Kolmogorov model predicts unstable flow (i.e., unbounded growth in K 

and E )  for -0.11 5 h2/S 5 0.61 which is in partial agreement with numerical sim- 

ulations and linear spectral analyses of the Navier-Stokes equations. Its predictions 

for the equilibrium anisotropy tensor are reasonable (except for b33 which is erro- 

neously independent of n/S) but it yields poor quantitative results for the time 
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evolution of K and e along with the equilibrium values of SKI&.  Furthermore, the 

model exhibits exact similitude with respect to the Richardson number which is not 

supported by large-eddy simulations. However, in this regard, it is still superior to 

the Launder, Reece, and Rodi model which deivates too strongly from Richardson 

number similarity. 

Finally, we will make suggestions for the development of improved models. It is clear 

that the major deficiency with the nonlinear K-e model lies in its lack of an ( e / S K ) ,  = 0 

fixed point and the lack of any dependence on sZ/S in the dissipation rate transport equa- 

tion. This can be corrected by allowing C,, and Cc2 to be nonlinear functions of an 

appropriate flow invariant which reduces to e/sZK for rotating shear flow. With such a 

correction, the nonlinear K-e model could be a strong competitor to the commonly used 

second-order closure models. In order to improve the second-order closures, we propose 

that material frame-indifference in the limit of two-dimensional turbulence (which con- 

stitutes a geostrophic flow constraint that all of the models considered herein violate) be 

applied in the manner of Haworth and Pope (1986) and Speziale (1985). This should 

yield improved behavior in the low Rossby number limit and provide the possibility of an 

additional fixed point for the high shear rate case since this correction increases by one 

the degree of the nonlinearity in qj. The implementation of these improvements and their 

evaluation based on a dynamical systems approach will be the subject of a future paper. 
~ 

I 
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Table 1. Equilibrium results for homogeneous turbulent shear flow in a rotating frame: 
Comparison of the predictions of the K--E: model with the large eddy simulations of Bar- 
dina, Ferziger, and Reynolds (1983) and the experiments of Tavoularis and Corrsin (1981). 

Values 
bl l  

LRR Model RK Model Experiments Simulations 
0.381 0.483 0.403 0.61 

-- I I I I I n/s=o.o I b12 I -0.369 I -0.337 I -0.284 I -0.29 
I I '  I 1 5.42 I 3.71 1 6.08 I - 

Table 2. Equilibrium results for homogeneous turbulent shear flow in a rotating frame: 
Comparison of the predictions of the Launder, Reece, and Rodi model and the Rotta- 
Kolmogorov model with the large-eddy simulations of Bardina, Ferziger, and Reynolds 
(1983) and the experiments of Tavoularis and Corrsin (1981). 
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Figure 1. Homogeneous turbulent shear flow in a rotating frame. 
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Figure 2. Time evolution of the turbulent kinetic energy for homogeneous shear flow: 
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Figure 14. Time evolution of the turbulent kinetic energy and dissipation rate for the 
Launder, Reece, and Rodi model: n/S = -0.1, SKo/eo = 50. 
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